LinkedIn Facebook twitter home page

Advanced Search

Change Location

Artech House USA
Detecting and Classifying Low Probability of Intercept Radar, Second Edition

Detecting and Classifying Low Probability of Intercept Radar, Second Edition

By (author): Philip E. Pace
Copyright: 2008
Pages: 857
ISBN: 9781596932340

Artech House is pleased to offer you this title in a special In-Print-Forever® ( IPF® ) hardbound edition. This book is not available from inventory but can be printed at your request and delivered within 2-4 weeks of receipt of order. Please note that because IPF® books are printed on demand, returns cannot be accepted.

Hardback $179.00 Qty:
The world's most authoritative resource on LPI emitter design and counter-LPI techniques is now updated with the latest developments in the field, complete with 360 task-clarifying illustrations and ready-to-use MATLAB simulations for every LPI modulation in the book. This revised and expanded second edition brings you to the cutting edge with new chapters on LPI radar design, including over-the-horizon radar, random noise radar, and netted LPI radar. You also discover critical LPI detection techniques, parameter extraction signal processing techniques, and anti-radiation missile design strategies to counter LPI radar. This comprehensive book presents LPI radar design essentials, including ambiguity analysis of LPI waveforms, FMCW radar, and phase-shift and frequency-shift keying techniques. Moreover, you find details on new OTHR modulation schemes, noise radar, and spatial multiple-input multiple-output (MIMO) systems. The book explores autonomous non-linear classification signal processing algorithms for identifying LPI modulations. It also demonstrates four intercept receiver signal processing techniques for LPI radar detection that helps you determine which time-frequency, bi-frequency technique best suits any LPI modulation of interest.
Part I: Fundamentals of LPI Radar Design To See and Not Be Seen. Anti-Radiation Missiles. LPI Technology and Applications. Ambiguity Analysis of LPI Waveforms. FMCW Radar. Phase Shift Keying Techniques. Frequency Shift Keying Techniques. Noise Technology Radar. Netted LPI Radar Systems. Case Study: Antiship LPI Missile Seeker.; Part II: Intercept Receiver Strategies and Signal Processing Strategies for Intercepting LPI Radar Signals. Wigner-Ville Distribution Analysis of LPI Radar Waveforms. LPI Radar Analysis Using Quadrature Mirror Filtering. Cyclostationary Spectral Analysis for Detection of LPI Radar Parameters. Autonomous Classification of LPI Radar Modulations. Concluding Remarks. Appendixes.; To view complete TOC:; Click Google Preview button under book title above, then click on Contents tab.;
  • Philip E. Pace Phillip E. Pace is a professor in the Department of Electrical and Computer Engineering at the Naval Postgraduate School in Monterey, California, where he serves as Chairman of the N433 Threat Simulator Validation Working Group and Director of the NPS Center for Joint Services Electronic Warfare. He is also the author of Advanced Techniques for Digital Receivers (Artech House, 2000) and he has published numerous papers on topics involving high speed signal processing in electronics and warfare applications. Dr. Pace received his Ph.D. from the University of Cincinnati.
Newsletter Signup


50% off eBooks

© 2019 Artech House